当前位置:首页 > 新闻 > 军事 > 正文

18个生成对抗网络(GAN)的绝妙应用!你确定不收

未知 2020-02-14 21:43

生成模型指在现存样本的基础上,使用模型来生成新案例,比如,基于现存的照片集生成一组与其相似却有细微差异的新照片。

GAN是使用两个神经网络模型训练而成的一种生成模型。其中一个称为“生成器”或“生成网络”模型,可学习生成新的可用案例。另一个称为“判别器”或“判别网络”,可学习判别生成的案例与实际案例。

两种模型(从博弈论的意义上来说)处于一种竞争状态,生成器企图愚弄判别器,而判别器则要同时处理生成案例和实际案例。

本文将回顾大量GAN的有趣应用,有助于你了解其能够解决的案例类型。以下列表或许并不完整,但其中包含了许多媒体介绍过的GAN使用案例。

2014年,Ian Goodfellow等人发表论文《对抗式生成网络》,提出了生成新案例这一应用。文中指出,GAN可为MNIST手写数码数据集、CIFAR-10小件图片数据集、多伦多人像数据集生成新案例。

2015年,Alec Radford等人在一篇重要论文《使用深度回旋生成对抗网络进行无监督表示学习》,也表达了类似观点。论文指出,深度回旋生成对抗网络展示了大规模培养稳定GAN的方法。论文展示了生成卧室新案例的模型。

同时,论文展示了GAN(在潜在空间中)运行向量运算的能力,只需输入生成的卧室案例和人像案例即可。

Tero Karras等人在2017年发表的论文《GAN质量、稳定性及变化性的提高》展示了生成人脸照片的案例,照片十分逼真。因此,论文引起了媒体的广泛关注。生成照片时以名人的脸作为输入,导致生成的案例具有名人的脸部特征,让人感觉很熟悉,却并不认识。

2018年发表的报告《人工智能的恶意使用:预测、预防及抑制》选用的也是以上案例,显示了2014至2017年GAN的快速发展。

Andrew Brock等人在2018年发表了题为《用于高保真自然图像合成的GAN规模化训练》的论文。论文展现了用BigGAN技术生成合成照片的案例。案例照片几乎与真实照片无异。

用BigGAN技术生成合成照片的案例。图片来自《用于高保真自然图像合成的GAN规模化训练》。

金杨华(音译)等人于2017年发表了题为《用GAN生成动画角色》的论文。论文展示了如何训练及应用GAN来生成动画头像(如日本动漫人物)。

受动画角色案例的启发,一些人试图利用GAN生成Pokemon这样的角色,比如pokeGAN项目和使用深度回旋GAN生成Pokemon项目。但目前成效甚微。

Phillip Isola等人于2016年发表题为《使用GAN技术进行图像转换》的论文。论文特别介绍了如何使用GAN的pix2pix技术进行图像转换。

朱俊彦等人于2017年发表题为《使用一致循环生成网络进行非配对图像转换》的论文。论文介绍了著名的CycleGAN技术以及大量图片转化的案例。

使用CycleGAN技术进行图片转化的四个案例。图片来自《使用一致循环生成网络进行非配对图片转化》。

使用CycleGAN技术将画作新闻资讯转化成照片的案例。图片来自《使用一致循环生成网络进行非配对图片转化》。

Han Zhang等人于2016年发表题为《StackGAN:使用堆叠GAN技术进行文字-图片转化及合成》的论文。论文特别介绍了如何运用StackGAN将对于简单物体(如花鸟)的文字描述转化为现实图片。

将鸟类文本描述转化成现实图片的案例。图片来自《StackGAN:使用堆叠GAN技术进行文字转图片转化及合成》。

Scott Reed等人于2016年发表了题为《使用GAN技术合成图像》的论文。论文介绍了把对花、鸟等物体的文本描述转化为图像的案例。

Ayushmen Dash等人于2017年发表了题为《TAC-GAN——受文本限制的辅助分类器GAN》的论文。文中介绍了几近相同的数据集案例。

Scott Reed等人于2016年发表了题为《学习绘画内容和地点》的论文。论文对GAN的此功能作了进一步介绍,并运用GAN完成文图转化,以及运用包围盒和关键点推测描绘物体(如一只鸟)的位置。

Ting-Chun Wang等人于2017年发表了题为《使用条件性GAN进行高清图片合成及语义操纵》的论文。文中介绍了使用条件性GAN根据语义图像或素描生成现实图片的方法。

语义图像及GAN生成城市景观照片的案例。图片来自《使用条件性GAN合成高保真图片及语义操纵》。

Rui Huang等人于2017年发表了题为《人脸转正:全球及地方GAN感知合成拟真正面人像图片》的论文。文中介绍了使用GAN根据特定角度的人脸生成正面人像图片(如脸朝前)的方法。此类技术可应用于人脸验证或辨认系统。

使用GAN生成正面人像的案例。图片来自《人脸转正:使用全球及地方GAN感知合成拟真正面人像图片》。

Liqian Ma等人于2017年发表了题为《人体体态图像生成》的论文。文中介绍了生成人体模型新体态的案例。

Yaniv Taigman等人于2016年发表了《无监督跨领域图像生成》一文介绍了使用GAN跨领域转化图像的方法。比如,将街区数字转化为MNIST手写数码,或将名人照片转化为emoji或动画表情。

Guim Perarnau等人于2016年发表了题为《使用可逆条件性GAN编辑图片》的论文。文中特别介绍了使用GAN的IcGAN技术根据特定的面部特征如发色、发型、表情甚至性别变化来重建人像图片的方法,比如:

Ming-Yu Liu等人于2016年发表了题为《耦合性GAN》的论文。文中同样介绍了如何利用发色、表情和眼镜等特征生成面部图片。论文同时也展示了其他图像的生成,如有颜色和深度变化的场景图片。

Andrew Brock等人于2016年发表了题为《使用IAN进行神经图片编辑》的论文。文中介绍了一种运用多种变化性自动编码器及GAN的面部照片编辑器。此种编辑器可以快速对人脸特征进行修改,包括修改发色、发型、表情、体态,以及增补面部胡须。

基于VAE和GAN使用神经图片编辑器修改面部特征的案例。图片来自《使用IAN进行神经图片编辑》。

He Zhang等人于2017年发表了题为《使用条件性GAN消除图片中的雨》的论文。文中介绍了如何使用GAN编辑图片,比如消除图片中的雨雪。

Grigory Antipov等人于2017年发表了题为《使用条件性GAN进行面部老化处理》的论文。文中介绍了使用GAN生成不同年龄段人脸图片的方法。

Zhifei Zhang等人于2017年发表了题为《使用条件性对抗自动编码器增龄/减龄》的论文。文中介绍了使用GAN对面部图片进行减龄处理的方法。

使用GAN对面部图片进行减龄处理的案例。图片来自《使用条件性对抗自动编码器增龄/减龄》。

Huikai Wu等人于2017年发表了题为《GP-GAN:关于现实高保真照片的混合》的论文。文中展示了GAN在混合照片,尤其是混合田野、大山及其大型物体照片中的应用。

Christian Ledig等人于2016年发表了题为《使用GAN生成单幅高分辨率图像》的论文。文中特别展示了GAN的SRGAN模型在生成具有超高分辨率图像中的应用。

Huang Bin等人于2017年发表了题为《使用条件性GAN生成具有高质量、超高分辨率的面部图像》的论文。文中特别展示了GAN在构建不同版本人脸图像中的应用。

生成高分辨率人脸图像的案例。图片来自《使用条件性GAN生成高质量超高分辨率面部图像》。

Subeesh Vasu等人于2018年发表了题为《使用强化超高分辨率感知网络分析扭曲认知的折中参数》的论文。文中展示了一个使用GAN构建街景高分辨率图片的案例。

使用GAN生成高分辨率建筑图片的案例。图片来自于《使用强化超高分辨率感知网络分析扭曲认知的哲衷参数》。

Deepak Pathak等人于2016年发表了题为《文本编码器:通过图片修复学习特征》的论文。论文特别介绍了如何使用GAN的文本编码器进行图片修复或填充空缺,即填补图片中某块缺失的部分。

Raymond A. Ye等人于2016年发表了题为《使用深度生成模型修复语义图像》的论文。文中介绍了如何用GAN对故意损坏的人脸图像进行填充和修复。

Yijun Li等人于2017年发表了题为《人脸图像生成性填充》的论文。文中同样介绍了如何使用GAN对损坏的人脸图像进行修复和重建。

Donggeun Yoo等人于2016年发表了题为《像素级领域转化》的论文。论文展示了如何根据身着服装的模特照片,运用GAN生成类似服装图集或线上服装店的服装图片。

Carl Vondrick等人于2016年发表了题为《生成场景动态视频》的论文。文中介绍了如何使用GAN进行视频预测,尤其是连续预测最长可至一秒的视频帧,聚焦于场景中的静态因素。

吴佳俊等人于2016年发表了题为《通过3D生成对抗模型学习物体形状的可能潜在空间》的论文。论文展示了如何使用GAN生成物体的3D模型,比如桌椅、汽车和沙发。

使用GAN生成3D模型的案例。图片来自《通过3D生成对抗模型学习物体形状的可能潜在空间》。

Matheus Gadelha等人于2016年发表了题为《由2D物体视图推导3D形状》的论文。文中介绍了如何使用GAN根据多种视角的2D物体图像生成3D模型。

标签 使用 生成